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Stability of steady state flows of an ideal incompressible liquid with homogeneous 
density with some type of symmetry (translational, axial, rotational, or helical) 
is considered. Two types of sufficient conditions for nonlinear stability are 
obtained, which can be proven by constructing two types of functionals which have 
absolute minima at the given steady state solutions. Each of the functionals used 
is the sum of the kinetic energy and some other integral, specific to the given 
class of motion. The first type of stability conditions are a generalization to 
the case of finite perturbations and a new class of flows of the well known 
Rayleigh criterion [I] for "centrifugal" stability of rotating flows relative 
to perturbations with rotational symmetry. In the same sense the second type 
of stability conditions generalize another result, also originally proposed by 
Rayleigh, according to which plane-parallel flow of a liquid is stable in the 
absence of an inflection point in the velocity profile [i]. A nonlinear variant of 
the latter condition for the class of planar motions was first obtained in [2]. To 
systematize the results extensive use is made of the analogy between the effects of 
density stratification and rotation in the form of [3]. The results to be presented 
relate to stability of a wide class of hydrodynamic flows having the required 
symmetry. For example, they relate to flows in tubes and channels which rotate 
or are at rest, and flows with concentrated annular or Npiral vortices. 

i. Flows with Helical Symmetry. We will consider nonsteady state motions of an ideal 
incompressible liquid with homogeneous density. In the cylindrical coordinate system ~, r, 
z the components of the velocity field are u, v, w; p is the pressure field. For the motions 
studied with helical symmetry u, v, w, and p are functions of three independent variables: 
r, B ~ a~- bz, and time t. For example, 

p = v ( r ,  ~, t). ( 1 . 1 )  

The term b denotes any real number; without limiting generality the parameter a may be 
assumed to have one of only two values: 0 and i. At a = i all solutions of the form of Eq. 
(i.i) will be periodic in ~ with period 27 and it will be sufficient to consider D values in 
the interval 

0 ~ < ~ < ~ 2 ~ .  ( 1 . 2 )  

At a = 0 ( r o t a t i o n a l  symmet ry)  s o l u t i o n s  may n o t  be p e r i o d i c .  Using t h e  n o t a t i o n  o f  [3] 

~ - - a u - - b r w ,  ~ - - b r u - i .  aw, (1.3) 

R----a2-]~ b2r2~ g--~-b2r/R ~, K-----2ab/R 2, 

the basic equations of motion for solutions of the form of Eq. (i.i) transform to 

D{ra/R)  -~ K~rv =-- --P,t, 

Dv - -  K~a  --  (aa/R)2/r ---- - P r  -}- g~12,: 
D[; = O, ~ + vlr -~- a~lr =-- O, 

D ~  q- v-g'F +--g" oI-T" 

(1.4) 
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Subscripts on the independent variables denote the corresponding partial derivatives. 

Differentiating the first expression of Eq. (1.4) with respect to r, the second with 
respect to D, and subtracting the one from the other, we obtain 

( O u O )2ab~ 2 
Do) + ~'~7r + 7 - ~ ,  I-~+~ TM ,~=0, (1.5) 

where ~ ------ (Ur)[(ralH)r  - -  u.].  

If the motion of Eq. (i.i) takes place in a fixed region, then its boundaries must 
possess the required symmetry, i.e., the function of two variables 

/(r,  ~) = 0 ( 1 . 6 )  

must  be s p e c i f i e d .  C o n d i t i o n s  f o r  n o n p e n e t r a t i o n  a t  Eq. ( 1 . 6 )  f o r  t h e  t r u e  v e l o c i t y  compo- 
n e n t s  u ,  v ,  w, w r i t t e n  in  t e rms  o f  Eqs.  ( 1 . 3 ) ,  ( 1 . 6 ) ,  g i v e  

~ +/.~/r = O. ( i. 7) 

The flow region will be considered either single- or double-bounded; in the latter case the 
boundary Eq. (1.6) will consist of two components - internal and external. 

Helical wall geometry in Eq. (1.6) may appear far-fetched, but helical tubes are indeed 
widely used in heat exchange apparatus [4]. At the same time an important special case of 
Eq. (1.6) is a circular cylindrical boundary with flow region 

RI<r<R2. (1.8) 

At R i ~ 0 Eq. (1.8) corresponds to flow between two concentric cylinders, and at R i = 0 to 
flow in a circular tube. 

At a = 1 Eqs. (1.4), (1.5) and boundary conditions (1.7) can be considered conveniently 
in the plane of the polar coordinates r, D with radial coordinate r and angular coordinate 
p, Eq. (1.2). In this plane the closed curves of Eq. (1.6) bound the flow region ~. With 
such an approach Eqs. (1.4)-(1.6) prove quite similar to the equations and boundary condi- 
tions for planar flows of a liquid with inhomogeneous density (stratified) [3]. The role of 
DL, the velocity components, is played by the quantity ~, and the role of density by the 
variable 8 (or $2). The corresponding "mass force field" is directed along the radius from 
the center and has a value g, Eq. (1.3). For motions with rotational symmetry (a = 0) this 
similarity becomes equivalence [3]. 

For the general case of Eqs. (1.4)-(1.7), the similarity of Eq. (i.i) to the motion 
of an inhomogeneous liquid is so fargoing that there exists an energy integral E in the form 
of the sum of fictitious "kinetic" T and "potential" P energies: 

T t v21 d~ (d~ ~ rdrdv) ~ ( 1 . 9 )  
i 

0 

In terms of the original velocity comonents u, v, w, the quantity E is the kinetic energy 
taken over one period, Eq. (1.2). The other integral of Eqs. (1.4)-(1.7) is defined in terms 
of an arbitrary function ~(8): 

I = .! ~ (~ )dv  = const. ( 1 . 1 0 )  

(1.4)-(1.7) has  2. Analogy of Hydrostatic Equilibrium States. The problem of Eqs. 
exact solutions - "states of rest": 

= v ~ O,  ~ = ~o(r),: (2 .1)  

c o n t a i n i n g  one a r b i t r a r y  f u n c t i o n  $ 0 ( r ) .  I n  t e rms  of  t h e  t r u e  v e l o c i t y  comopnents  u,  v ,  w, 
s o l u t i o n  ( 2 . 1 )  c o r r e s p o d n s  t o  a f l ow 

u = u0(r), v ---- O, v: ---- w0(r); au o = brwo, ( 2 . 2 )  
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specified by one arbitrary function u0(r) or w0(r). For flows with rotational symmetry 
(a = O) the equivalents of the hydrostatic states will be flows with circular flow lines 

u = uo(O, v = w = O, ( 2 . 3 )  

where the function u0(r) on the interval of Eq. (1.8) is specified arbitrarily. 

Now let 

a = ~ , p ,  t),  v = v(r, p, t), p = p(r,: p, t) ( 2 . 4 )  

be an e x a c t  n o n s t e a d y  s t a t e  s o l u t i o n  o f  Eqs .  ( 1 . 4 ) - ( 1 . 7 ) ,  c o n s i d e r e d  a s  a p e r t u r b a t i o n  o f  
a " r e s t  s t a t e " ,  Eq. ( 2 . 1 ) .  Then 

S t a t e m e n t  1. Over  t h e  e n t i r e  f l o w  r e g i o n  �9 o f  Eq. ( 2 . 1 )  l e t  t h e  i n e q u a l i t y  

O < c - < . g / ( ~ ) , < c  + < ~ ( 2 . 5 )  

w i t h  c o n s t a n t s  c -  and c + be s a t i s f i e d .  Then p e r t u r b a t i o n s  a ,  v ,  o ~ $2 _ 8~ o f  t h e  f l o w  o f  
Eq. ( 2 . 1 )  can  be e v a l u a t e d  in  t e r m s  o f  t h e i r  i n i t i a l  v a l u e s  a , ,  v , ,  o ,  i n  t h e  f o l l o w i n g  
manner :  

;(~ ) :) -~-  + v' + c , a  ~ d,< f{~*2 ~ ( 2 . 6 )  J ~ R  +v*+c+~ d ~  
T 

Proof. We will use the notation p ~ ~2, P0 E 8~. From Eqs. (1.9), (1.10) we compose 
a conservative functional 

which can be represented in the form of three terms: 

F(~, v, p) --= F(0, 0, eo) + F~ + F~, 

F1 = .[,~ [~ (po) -~ r  (po)J d~, 

Z 

where a prime indicates differentiation with respect to the argument. In F z the function 
U(r) is replaced by U = #(P0), obtained by eliminating r from U = U(r), Eq. (1.9) and p = 
p0(r), Eq. (2.1). In light of Eq. (2.5) the function #(P0) is monotonic. Making use of the 
arbitrariness of r we take ~'(P0) E -$(P0), after which it develops that F z ~ 0, and the 
function F 2 is time-independent. 

Further, since 

dUldPo 
~' (p0)= - ~ . / ~  = _ g / ( p ~ ) ~ ,  

Eq. (2.5) is equivalent to the inequality 

c- ~ ~ "  ~.~c +, (2.7) 

which is satisfied over the range of P0 in the region ~. Let the function ~(p) be defined for 
all other p values with conservation of the property of Eq. (2.7). Then for any numbers h and 
s by integrating (2.7) one can obtain 

(i/2)c-12 ~ r + l) - -  @(h) - -  (D'(h)/~.~ (l/2)c§ ( 2 . 8 )  

Now w i t h  c o n s e r v a t i o n  o f  F2,  Eq. ( 2 . 5 )  f o l l o w s  f rom Eq. ( 2 . 8 ) .  

I n  t h e  p r e s e n c e  o f  r o t a t i o n a l  a s y m m e t r y  ( a  = 0) Eq. ( 2 . 5 )  f o r  p e r t u r b a t i o n s  o f  t h e  f l o w ,  
Eqs .  ( 2 . 3 ) ,  ( 1 . 8 ) ,  r e d u c e s  t o  t h e  fo rm 

R 2 R2 

( ~ + ~  +c-o~)rd,'< ~ (,~ +w~ +~,~)rd~, (2.9) 
R 1 R1 
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where o_~r~- (u~- -u ] )  ; condition (2.5) gives 

c-  ~ [r ~ (,'~U~)r] -~ ~_ c +. ( 2 . 1 0 )  

The f i n a l  c o n s t a n t  c + e x i s t s  o n l y  f o r  R~ > 0. At R 1 = 0 t h e  f o r m u l a t i o n  o f  t h e  e s t i m a t e  
m u s t  be  changed  f o r  u 0 ( r )  v a l u e s  o f  p r a c t i c a l  i n t e r e s t .  

E s t i m a t e s  o f  t h e  p e r t u r b a t i o n s  somewhat  more  a c c u r a t e  t h a n  Eq. ( 2 . 6 )  can  be o b t a i n e d  in  
the two following cases. 

Statement 2. If over the entire flow region x of Eq. (2.1) we have 

t h e n  f o r  any  p e r t u r b a t i o n s  o f  Eq. ( 2 . 4 )  t h e  i n t e g r a l  

(2.1i) 

L .  + + = 
( 2 . 1 2 )  

is time-independent. This can be proved from the coincidence of functional (2.12) with F 2 
given condition (2.11). 

For perturbations with infinitely small amplitude direct calculations will verify 

Statement 3. If over the entire flow region x of Eq. (2.1) we have 

0 < g / ( ~ G  < ~ ,  (2.13) 

then the integral of Eq. (2.12) is time-independent, with ~, v and a corresponding to the 
solution of the problem of Eqs. (1.4)-(1.7) linearized to Eq. (2.1). 

The presence of upper limits for an arbitrary perturbation in terms of its initial value, 
Eqs. (2.6), (2.9), (2.12) implies stability in the mean square solution Eqs. (2.1)-(2.3) in 
the sense of Lyapunov's definition [5, 6]. 

The estimate of Eqs. (2.9), (2.10) is a nonlinear variant of the Rayleigh stability 
criterion [i, 7], widely known in linear stability theory, which guarantees stability of a 
flow with rotational symmetry, Eq. (2.3), relative to perturbations with rotational symmetry 
given the condition of increase in the square of the circulation r2u0 2 with increase in radius 
r. Statements 1 and 2 provide nonlinear analogs to the Rayleigh criterion for flows of Eq. 
(2.2) with more complex (helical) geometry. 

3. Analogs of Planar Motion of a Homogeneous Liquid. In light of the equation D$ = 0 
solutions of system (1.4) with $ = const are an independent class. Specification of initial 
data in this class guarantees the applicability of the solutions thereto. The order of 
system (1.4) with respect to time then decreases by one, and it becomes a first order 
system. After replacement of the first two equations of Eq. (1.4) with the consequences of 
Eq. (1.5) we obtain a system 

DE = O, ~ -~ ~ @ 2ab~lR, v, + v/r + a~/r = ~ ( 3 . 1 )  

which  upon i n t r o d u c t i o n  o f  t h e  f l o w  f u n c t i o n  $ ( r v  = -~pp, a = S r )  r e d u c e s  t o  a s i n g l e  e q u a -  
t i o n  in  ~. The b o u n d a r y  c o n d i t i o n  Eq. ( 1 . 7 )  r e d u c e s  t o  ~ = c o n s t  on Eq. ( 1 . 6 ) ,  w h i l e  t h e  
v a l u e  o f  t h e  c o n s t a n t  may d i f f e r  on e a c h  componen t  o f  t h e  b o u n d a r y .  

The integral I, Eq. (I.i0), is meaningless for this class of motions. At the same time 
there exists another integral valid only for motions with $ = const and definable in terms of 
an arbitrary function ~(X): 

J = y ~ ( % ) d z  -- const. ( 3 . 2 )  

In the special case ~(I) - X conversion of the integral J to a surface integral over ~ gives 
an analog to conservation of velocity circulation along the flow boundary: 

I - ) = ( 3 .3  ) 
a~ 
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It follows directly from the equations of motion Eq. (1.4) that if the boundary 3% consists 
of two closed components (the region % is double-bounded), then the value of the integral 
(3.3) is conserved separately on each component. 

Let some steady state solution of Eqs. (3.1), (1.7) be specified 

From the equation DX = 0 it follows that there exists a functional dependence ~o = ~(Xo)- 
Further, let ~(r,  ~, t) = ~ o + ~ ( r ,  ~, t), %~, ~, t) = %o + ~(r, V, 0 be some nonsteady state solution 
of Eqs. (3.1), (1.7) which can be considered a perturbation of the flow of Eq. (3.4). At 
t = 0 on each componentjof the boundary ~% we assume that F[~] = 0, then in view of Eq. (3.3) 
on the boundaries F[~] : 0 at any moment in time. Then 

Statement 4. Over the entire region % of the flow of Eq. (3.4) let the inequality 

0 ~ c~- < dLF/dXo < c* < oo ( 3 . 5 )  

with constants c- and c + be satisfied. Then perturbations ~, K can be evaluated in terms of 
their initial values ~,, ~, in the following manner: 

The proof of this statement repeats that of statement 1 with slight changes and will not 
he presented here. It will be sufficient to note that the integrals E, Eq. (1.9), and J, 
Eq. (3.2), are used. 

The imposition of the condition F[#] = 0 on the perturbation field is not physically 
limiting, since change in F is equivalent to transition from Eq. (3.4) to some other nearby 
steady state solution, the stability of which will then he investigated. 

The result obtained can be significantly expanded in the important cases of solutions of 
Eq. (3.4) with rotational symmetry and circular boundary geometry, Eq. (1.8). In terms of 
the original velocity components u, v, w such flows are specified by two related functions of 
r: 

u = uo~ ), V = O, w =  we(r); bru o + a w e  = No. (3.7) 

Such flows and nonflow conditions on the boudnary, Eq. (1.8), are invariant relative to 
shifts along the axis of symmetry (z axis). This permits consideration of the stability 
problem in any coordinate system moving relative to the original system along the z axis with 
constant velocity M. As a result, we obtain the same statement 4, with inequality (3.5) 
taking on the more concrete form 

c 7 d~' ~ / d Z  o % + b ~ M  
- ~ ' d ~  o = d r /  dr = A <~CV' (3.8) 

where ~0 E au0 - brw0. 
any of three expressions 

The quantity A - dlQ/dr is independent of and can be specified by 

[ + 2o 01 __ l (3.9) 

We may also add here the same inequality (3.8) may be obtained by transition into a coordi- 
nate system uniformly rotating about the z axis rather than one in translation. Thus we 
have 

Statement 5. If there exists a constant M such that over the entire interval of Eq. 
(1.8) Eq. (3.8) is satisfied, then the flow of Eq. (3.7) is stable in the sense of the pre- 
sence of Eq. (3.6). 

In particular, this stability condition contains the narrower 

Statement 6. If the continuous function A(r), Eq. (3.9), has no zeroes within the 
interval of Eq. (1.8), then the folow of Eq. (5.7) is stable. 
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The possibility of choosing a constant M at A # 0 for a flow between two cylinders is 
obvious. For a flow within a tube (R I = 0 in Eq. (1.8)) it is sufficient to note that in 
the absence of singularities in the vorticity distribution for r + 0 it is always true that 
~0(r) % r n with the constant n ~ i. 

Statements 3-6 are a generalization to a new class of motions, Eq. (i.i), and to finite 
amplitude perturbations of Rayleigh's result widely known in linear stability theory [i] 
concerning stability of planeparallel flow in the absence of an inflection point in the 
velocity profile. In the special case (b = 0) motions of Eq. (i.I) are planar and statements 
3=6 give the previously known results of Rayleigh [I], Fjortoft [7], and Arnold [2, 8]. 
At a = 0 (stability of an axisymmetric flow in a circular tube) the linear variant of state- 
ment 6 was also obtained by Rayleigh [9]. 

4. Rotating Flows with Translational Symmetry. We will consider motion of a liquid with 
homogeneous density in a coordinate system rotating with a constant velocity ~/2. The equa- 
tions of motion can be written in the form [6] 

Du.q- s  = --Vp*, div u = O, D ~ O l O t  -F u.V. 
(4.1) 

Here u is the velocity vector; p* is the modified pressure, including a "centrifugal" 
addition. 

Let k be a unit vector specifying a fixed (in the rotating system) direction and 
forming with the vector ~ an angle e(0 ~ 0 < ~). We will study the class of solutions of 
Eq. (4.1) in which u and p* do not change a~ong the direction of the vector k. We intro- 
duce a Cartesian coordinate system x, y, z, such that the z axis is parallel to the vector 
k, and the vector ~ lies in the plane xz. For the motions considered the velocity field u = 
(u, v, w) and the pressure p* are independent of the coordinate z: 

u = u(x ,  y,  t), p *  = p * ( x ,  . ~  t) . .  

A f t e r  i n t r o d u c i n g  t h e  n o t a t i o n  o f  [3] 

( 4 . 2 )  

ft = ( f ~ ,  0, f&), p ~ w - -  ~ y ,  g = k x  g ' =  (0, g, 0) ,  g ~_ P-i  

sys t em ( 4 . 1 )  f o r  mo t ions  of  Eq. ( 4 . 2 )  can be t r a n s f o r m e d  to  

Du = --p=, Dv = --Ptl -[- Pg, 
o o o 

D p = 0 ,  u x + v u = 0 ~  D ~  +u:-~x +v-~y ~ 

(4.3) 

(4.4) 

where P--~P*--~3~ + T ~ w ,  ~ i s  t h e  f low f u n c t i o n  f o r  which u = - ~ y ,  v = Ox" 

I f  t h e  mot ion  o f  Eq. ( 4 . 2 )  t a k e s  p l a c e  in  a f i x e d  r e g i o n ,  t hen  i t s  boundary  must have  
t h e  form o f  a c y l i n d r i c a l  s u r f a c e  w i th  d i r e c t r i x  p a r a l l e l  t o  t h e  z a x i s ,  i . e . ,  t h e  e x p r e s s i o n  

](x, y) = 0 (4.5) 

is specified. In the plane xy curve (4.5) limits the flow region ~, which may also not be 
single-bound. Its boundary 3~, Eq. (4.5) may either by closed or extend to infinity. The 
nonflow condition on the boudnary of Eq. (4.5) gives 

Ulx + v]. = O. ( 4 . 6 )  

The coincidence of Eqs. (4.4)-(4.6) with the equations and corresponding boundary 
conditions for planar motions of inhomogeneous density (stratified) liquids in the 
Boussinesq approximation [i0] is remarkable. Because of this, all results valid for planar 
flows of stratified liquids are valid for rotating flows with translational symmetry. In 
particular, the kinetic energy integral for Eqs. (4.1), (4.6) in terms of Eqs. (4.3), (4.4) 
can be written in the form of a sum of fictitious "kinetic" T and "potential" P energies: 

E = T + II - -  const, ( 4 . 7 )  

T--~..~ (u ~ + v 2) d~  H~__ pUd~ (dE~-dxdy)~ 
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where U is the potential, introduced in accordance with g = -- VU. 
(4.6) is 

l~__z~ O (p) d~ 
T 

with a r b i t r a r y  func t ion  ~(p) (compare Eqs. (1 .9 ) ,  ( t . 1 0 ) ) .  

The analogs to hydrostatic equilibrium states of the class of Eq. 
tions of Eq. (4.4) of form 

= v = 0 ~  p = p 0 ( y ) .  

The other integral (4.4), 

(4.8) 

(4.2) are exact solu- 

(4.9) 

In the original terms of Eq. (4.1) Eq. (4.9) describes a shear flow in one direction (plane- 
parallel flow): 

u = v = 0, u, = u,0(y). 

The functions P0(Y) and w0(y) in Eqs. (4.9), (4.10) are arbitrary. 

Now let 

u = u ( x ,  y, t), L, = ~@, y, t), p = ~o(y) + o(~, y, t) 

(4.10) 

be some exact nonsteady state solution of Eqs. (4.4)-(4.6), considered as a perturbation of 
"state of rest", Eq. (4.9). Then 

Statement 7. Over the entire flow region �9 let the inequality 

with constants c- and c + be satisfied. Then perturbations u, v, o of the flow of Eqs. (4.9), 
(4.10) can be evaluated in terms of their initial values in the following manner: 

+ v-" + c ( . : +  v: + 

The proof of this statement is based on the presence of integrals E, Eq. (4.7), and I, 
Eq. (4.8), and almost literally repeats the proof of statement i, so will not be presented. 

For the interest case of linear functions w0(y) or P0(Y) (Couette profile in the gap 
between planes) there is an analog statement 2. 

Statement 8. Over the entire region �9 let 0 < g/Poy= const< =, then for the problem of 
Eqs. (4.4)-(4.6) the solution of Eqs. (4.9), (4.10~ is stable in the sense of time independence 
of the integral 

~[u~+ v ~ + (g/poy)~]d~ = const. 

For the problem of Eqs. (4.4)-(4.6) there also exists a class of motions with p = const 
(see Section 3), which reduces to planar motions of a homogeneous liquid with ~ = 0. Such 
motions are a special case of those studied in Section 3 (with b = 0), and were considered 
previously in [2, 8]. Thus their special study would be superfluous here. 

5. General Remarks. In conclusion it is fitting to consider several points important 
for an overall understanding of the questions touched. 

i. From the mathematical viewpoint all the statements derived have the character of a 
priori estimates, since corresponding theorems for the existence of solutions were not proved. 

2. Statements 1 and 4 were proved by the method of "coupling" of integrals [5, 6] in 
the form of [2, 7, 8]. 

3. To clarify the relationship between statements 1 and 4 by variation principles, it 
is sufficient to note that vanishing of the functional F~ given proof of statement 1 is 
equivalent to the presence of an absolute extremum in F in the flows of Eqs. (2.1), (2.2). 
Similarly the functional E + J, Eqs. (1.9), (3.2) has an absolute extremum for any flow Eq. 
(3.4). Imposition of the conditions (2.3), (3.5) guarantees that both of these extrema are 
minima. The term "absolute extremum" is used here in the sense that in the class of motions 
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with a given symmetry no other additional limitations on variations of the hydrodynamic 
fields are imposed. 

4. Considering the similarity of Eqs. (i.i), (4.2) to motions of a stratified liquid 
discussed in Sections i, 4, statements 1-3 and 7 are analogs of the Lagrange theorem of 
analytical mechanics [5, 6] regarding stability of the rest state of a mechanical system 
having an isolated minimum inpotential energy. It can be proved, for example, that given 
conditions (2.5), (2.10), (2.11), (2.13) the fictitious potential energy P, Eq. (1.9), 
has an isolated minimum for variations of the "density" ~ which satisfy the condition I = 
const, Eq. (I.i0). 

5. The evaluations obtained, which indicate mean square stability, may be unsatis- 
factory for some purposes. In fact, if we measure deviations of the solutions not with 
mean, but rather maximum perturbation values, then as Lyapunov noted, conservation of energy 
proves insufficient for proof of the statements regarding stability. To obtain corres- 
ponding evaluations it is necessary to introduce additional limitations on the solution, 
with the problem of justifying these limitations remaining open [6]. 

6. All statements on stability presented herein are arbitrary in the sense that 
stability is guaranteed only for special classes of perturbations having the same symmetry 
as the main flow. Naturally proof of stability in such classes is of limited physical 
significance. However the difficulties in studying exact nonlinear hydrodynamics problems 
are so great that even information on the properties of special classes of motion are of 
interest. 
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